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Abstract. The electrical resistivity of a series of dilute polycrystalline Cu(Al) alloys has been
investigated in the temperature range 4.2–300 K. The phonon part of the resistivity at low
temperature varies asT n where 4< n < 5. The temperatureTH corresponding to the maxima
of the deviations from Matthiessen’s rule1(c, T ) obeys the Kagan–Zhernov law, i.e.TH ∼ c1/5.
At high temperatures the slope of1(c, T ) depends on the impurity concentration and changes
sign from negative to positive.

1. Introduction

In the past three decades, a great deal of experimental data have established the existence of
large deviations from Matthiessen’s rule (DMRs) for the electrical resistivity of polyvalent
and noble metals containing non-magnetic impurities [1, 2]. In parallel with the experimental
activities considerable theoretical attempts have been reported in order to explain the
observed DMRs. Bass [1] and Wiser [3] have described and critically reviewed various
theoretical approaches to account for the DMR. The experimental data show that the most
salient features of the DMR of polyvalent and noble metals are (i) a monotonic increase
at low temperatures, which does not follow a simple power law with temperature, (ii) a
maximum, called a ‘hump’, at intermediate temperatures, which becomes more and more
pronounced with decreasing concentration of alloying atoms and (iii) the fact that at high
temperatures DMR either varies linearly with temperature with positive or negative slope
or is temperature independent.

As a physical reason for the large observed DMR Bass [1], in his comprehensive review
article, proposed a total of 14 different explanations. In the early 1980s Kaveh and Wiser
[4, 5], in two important papers, developed a theoretical framework in which they attempted
to provide a natural explanation for the magnitude of the DMRs of polyvalent and noble
metals, their temperature dependence, their approximate log(ρ0) dependence of1ρ, and
their ‘humps’. Their approach is based on the fact that, at low temperatures, the electron–
phonon scattering probability for these metals is very anisotropic over the Fermi surface.
The electrons, occupying a relatively small portion of the Fermi surface in the vicinity of
the Brillouin zone boundaries, are scattered much more strongly than those on the rest of the
Fermi surface. Analysing the phenomena associated with the large DMR, Kaveh and Wiser
have used the variational formulation of the Boltzmann equation, based on a new deviation
electron distribution function, which incorporates explicitly the extremely large anisotropy
over the Fermi surface of the electron–phonon scattering probability. Using this procedure
Kaveh and Wiser obtained excellent agreement with the resistivity data of dilute aluminium
alloys both as a function of temperature and as a function of impurity concentration.

0953-8984/96/5011083+09$19.50c© 1996 IOP Publishing Ltd 11083



11084 G Apostolopoulos and C Papastaikoudis

The linear dependence of1(c, T ) on temperature at high temperatures has been
attributed by Kagan and Zhernov [6, 7] to interference between scattering of electrons from
phonons and from impurities. According to their detailed calculation, the sign of the slope
of the linear part of1(c, T ), i.e. ρ−1

0 ∂1(c, T )/∂T , would usually be the same as the sign
of the difference between the ionic charges of the impurity and the host ion in the lattice.
An alternative derivation by Bhatia and Gupta [8] yielded similar results. According to
their model the interference term should lead to a linear dependence of the relative DMR
1(c, T )/ρ0 on T and the sign of the slope is determined by the sign of an integral whose
argument contains the difference between the form factors for the impurity and the host ion.

Previous investigations of the DMR on Al(Cu) dilute alloys [9] have indeed displayed
the above-mentioned features. Especially in the high-temperature region,1(c, T )/ρ0 is
linear in T with a weak negative slope. This result is in agreement with the Kagan–
Zhernov [6, 7] calculation because the difference of the valence between Cu impurity and
Al host is negative.

The purpose of the present investigation is to study the influence of Al impurities on
the Cu DMR and in particular to examine the validity of the theory by Kagan and Zhernov
[6, 7] and Bhatia and Gupta [8].

2. Experimental procedure

The electrical measurements were performed on polycrystalline samples, of pure copper
(99.999%, supplied by ASARCO) with residual resistivity ratio of 1600 and copper alloyed
with 60, 140, 270, 560, 1000, 2500 and 5000 ppm aluminium (99.999% supplied from VAM,
Bonn, Germany). The alloys were prepared by HF levitation melting and then rolled into
foils of about 100µm thickness. The Al concentration was determined by chemical analysis
with an accuracy of±0.006 wt%. The specimens of the alloys were annealed for 24 h at
900◦C in a vacuum (<10−5 mbar), while the pure copper samples were annealed under a
low pressure of oxygen to remove the effects of magnetic impurities. The Cu(Al) alloys
were in the solid solution region, as evidenced by the residual resistivity, which was always
proportional to the impurity concentration. The residual resistivity per atomic per cent
was1ρ/c = 1.14 µ�/at.%, which is in very good agreement with previous measurements
[10, 11]. The experimental setup for the measurements of the electrical resistance has been
described previously [12]. The main errors in the values of the restivities can be attributed
to the inaccuracy in the determination of the geometrical factor (±0.5%).

3. Results

The relative DMRs,1(c, T )/ρ0, for seven Cu(Al) alloys are plotted as a function of
temperatureT in figure 1. The DMR1(c, T ) is defined by the relation

1(c, T ) = [
ρa(T ) − ρp(T )

] − [
ρa(4.2 K) − ρp(4.2 K)

]
(1)

where ρa(T ) and ρp(T ) are the phonon-induced resistivities for the alloyed and pure
samples, respectively. The relative DMRs show the following features: at low temperatures
1(c, T )/ρ0 increases with temperature, while at intermediate temperatures the DMRs show
maxima that become more and more pronounced with decreasing concentration and which
shift with concentration. In the high-temperature region,1(c, T )/ρ0 are linear inT , but
the sign of the slope changes from negative to positive as the aluminium concentration
increases. For the alloy with 1000 ppm Al the slope1(c, T )/T is zero. Similar behaviour
in the high-temperature region has been found by Panovaet al [13] in the DMR of Mg(Pb)
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Figure 1. Relative DMR1(c, T )/ρ0 as a function of temperature for Cu(Al) alloys.

alloys, but the change of the slope goes from negative to positive as the Pb concentration
increases.

Figure 2 shows the quantity [ρa(T )−ρ0]/T 4, instead of the relative DMR1(c, T )/ρ0,
as a function ofT in a double-logarithmic plot.ρa(T ) is the measured resistivity of the
alloys at the temperatureT . ρa(T ) − ρ0 of the pure copper and the alloy with 60 ppm
aluminium varies aproximately asT 4 in the temperature range 6–12 K. As the temperature
increases up to 35 K,ρa(T ) − ρ0 goes over toT 5 dependence. The alloys with aluminium
concentration greater than 60 ppm show only aT 5 dependence for temperatures above 10 K.
For temperatures lower than 10 K the resolution of the measurements was insufficient and
so it was impossible to observe any temperature dependence.

Figure 3 shows the dependence of the phonon resistivityρa(T ) − ρ0 on the residual
resistivity, ρ0, in a semilogarithmic plot for a series of fixed temperatures. These
temperatures are chosen in order to be nearly the same as those in the review article by
Cimberleet al [2]. The dashed straight lines which are drawn through the experimental data
at fixed temperatures show that the phonon resistivityρ(T ) − ρ0 below a certain definable
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Figure 2. Temperature dependence of [ρ(T ) − ρ0]/T 4 for Cu(Al) alloys.

value of the residual resistivityρ0 is constant, which means that Matthiessen’s rule is valid,
while above this valueρ(T ) − ρ0 depends logarithmically onρ0, i.e. Matthiessen’s rule
is not valid. The full curve at 15.7 K represents the calculated values of the phonon
resistivity ρ(T ) − ρ0 as a function ofρ0 [14]. This graph shows that there is no indication
for a saturation ofρ(T ) − ρ0 for samples having higher values ofρ0 as predicted by the
theoretical calculation.

4. Discussion

The excitation of thermal vibrations in the perturbed lattice, which in general differ from
those in the ideal lattice, can give rise to a temperature dependence of the defect-induced
resistivity. A large number of calculations of the phonon resistivityρ(T ) for noble metals
in the ‘dirty’ limit have been based on two-plane-wave pseudo-wavefunctions and a realistic
Fermi surface.

Recently Bergmannet al [14] calculated the low-temperature resistivityρ(T ) of noble
metals using a variational solution of Boltzmann’s equation. In order to calculate the
electron–phonon scattering matrix elements, they used an anisotropic Fermi surface, multi-
plane-wave pseudo-wavefunctions and an electron distribution function which contains both
angular and energy dependence.

Based on these assumptions, Bergmannet al [14] calculated the temperature dependence
of the electron–phonon scattering termρep(T ) for noble metals and they found the following
features. (i) ForT < 3 K, ρep(T ) ∼ T 5; however, at these low temperatures, the electron–
electron scattering termρee(T ) also makes an important contribution; the sum of these two
contributions varies very closely withT 4. (ii) In the temperature regionT ∼ 5–6 K, a direct
calculation of the electron–phonon part,ρep(T ), shows thatρep(T ) follows the power law
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Figure 3. ρ(T ) − ρ0 as a function of the residual resistivityρ0 for different fixed temperatures.
The full curve at 15.7 K is that calculated by Bergmannet al [14].

T n(T ), wheren(T ) ∼ 4.0–4.5, for values of residual resistivityρ0 in the nanoohm centimetre
range. In this temperature region the contribution ofρee(T ) to ρ(T ) is relatively small but
large enough to reduce the apparent power law ofρ(T ) to aboutT 4.

A T 4 dependence of the resistivity was also found in Ag-based alloys in the temperature
range 1.2–9 K by Barnardet al [15], which means that the two systems behave similarly.

The T 4 dependence of the resistivity in the present pure copper sample and the alloy
with 60 ppm Al in the temperature range 4.2 K< T < 10 K can be attributed to the
contributions from both electron–phonon and electron–electron scattering as discussed by
Bergmannet al [14].

As the temperature increases above 10 K the electron–electron scattering term becomes
ineffective and the net effect is due only to electron–phonon scattering. By increasing the
Al concentration, theT 4 dependence of the resistivity disappears and aT 5 dependence is
observed in the temperature range 10 K< T < 35 K. Similarly, a T 5 dependence has
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Figure 4. TH against solute concentrationc.

been found also in the temperature range 10 K< T < 35 K by Lengeleret al [16] for
Cu(Au) and Cu(Ni) alloys. These authors have explained their results using the Kagan–
Zhernov [6] theory, where they have taken into account the inelastic coherent scattering.
According to the Kagan–Zhernov calculation, if the atomic mass of the impurities is much
larger than that of the host lattice atoms a resonance in the scattering of phonons at the
impurities can occur. This is also the case for Au in Cu but not for Ni and Al. On the other
hand, Brett and Black [17] calculated numerically the resistivity of copper at temperatures
below 20 K using variational calculations. Their results indicate aT 5 behaviour with
a magnitude ofρ/T 5 of about 0.035 × 10−9 µ� cm K−5. These results are in good
agreement with the present measurements, which, as show in figure 2, give, atT = 20 K,
for [ρ(T ) − ρ0]/T 5 values between 0.030 and 0.038× 10−9 µ� cm K−5 for the Cu(Al)
alloys and 0.024× 10−9 µ� cm K−5 for the pure copper.

At intermediate temperatures the characteristic feature of the DMR is the appearence
of the ‘hump’, which shifts with the Al concentration. Figure 4 shows the temperature
TH , corresponding to the ‘hump’ of1(c, T ), as a function of the Al concentration in a
log–log plot. This diagram shows thatTH varies proportionally withc1/5, except for the
Cu(Al) alloys with the largest impurity concentrations whereTH was not easy to determine
due to washing out of the ‘humps’. The phenomenon of the ‘hump’ has been studied very
extensively for aluminium, with detailed data available for many different types of impurity
[18–22].

The appearance of the ‘hump’ in the DMR and the shift of its position with concentration
asc1/5 was demonstrated by Kagan and Zhernov [6, 7]. They showed that theTH ∼ c1/5 law
can be attributed to the change in the anisotropy of the nonequilibrium electron distribution.
This anisotropy is mainly caused by the Umklapp processes in electron–phonon interaction
and is also a result of the anisotropy of the phonon spectrum, which also exists in a spherical
Fermi surface. By adding impurities in a host metal the anisotropy of its nonequilibrium
electron distribution function is smoothed out.

Under the assumptions that the metal is simple cubic, its Fermi surface is spherical and
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its phonon spectrum consists of three branches of equal frequency with polarization along
the crystal axes, Kagan and Zhernov [7] calculated the pure metal resistivity and found the
expression

ρp(T ) = ρ ′
p(T )[1 − η(T )] (2)

where ρ ′
p(T ) is the ideal resistivity calculated using an isotropic electron distribution

function, andη(T ) is a function which depends upon the existence of anisotropy. This
anisotropic parameterη(T ) can be determined from the approximate relation

η(TH ) ∼ 1(c, TH )/ρ0(c) (3)

where 1(c, TH )/ρ0(c) is the maximum experimental value of the DMRs, which occur
at the ‘hump’ temperatureTH . Figure 5 shows1(c, TH )/ρ0(c) of the present samples
as a function ofTH/2D together with the values for other copper alloys [16, 23]. As
Debye temperature the value2D ∼ 343 K (of pure copper) [24] is used, under the
assumption that at these impurity concentrations2D remains unchanged. The dashed curve
represents the anisotropy functionη(T ) which was obtained by Kagan and Zhernov [7], for
a simple cubic metal with a spherical Fermi surface and a phonon spectrum corresponding
to the nearest-neighbour interaction. A comparison between the calculatedη(T ) curve
and the experimental1(c, T )/ρ0 values for different copper alloys shows that for the
systems Cu(Al), Cu(Ge) [23] and Cu(Sn) [23] there is relatively good agreement, while
for the systems Cu(Au) [16, 23] and Cu(Ni) [16] the1(c, T )/ρ0 data are about an order of
magnitude larger than the calculated valueη(T ). Figure 4 shows also that the temperature
TH corresponding to the ‘hump’ becomes strongly dependent on the concentration and shifts
to higher temperatures as the concentrationc increases, where the anisotropy parameter
η(T ) decreases. This means that the nonlinear effects are weak in the dirty specimens.
The cause of this nonlinear effect is the suppression of the anisotropy of the distribution
function due to elastic scattering on the impurities. It must be mentioned here that an
important conclusion to be drawn from the Kagan–Zhernov studies is that their calculation
is an idealized model (spherical Fermi surface, one-OPW electron wave function, incorrect
electron distribution function, etc) and so cannot yield quantitatively reliable results. On
the other hand, as mentioned above, Kaveh and Wiser [4, 5], using a variational formulation
of the Boltzmann equation, were the first to show quantitatively that the existence of the
‘hump’ and its shift with impurity concentration asc1/5 for Al alloys can be related directly
to the function8(k) which describes the variation of the electron distribution functionf (k)

from the equilibrium valuef0(k). A comparison of the characteristics of the ‘humps’ for
the aluminium and copper alloys which are reported in the literature shows that if there
are any differences they are not significant. This may mean that the same mechanism is
responsible for the appearance of the ‘hump’ in both systems.

As regards the high-temperature region, as mentioned in section 1, the linear dependence
of 1(c, T )/ρ0 on the temperatureT and the sign of the slopeρ−1

0 ∂1(c, T )/∂T of the Cu(Al)
system can be explained using either the Kagan–Zhernov [6, 7] or the Bhatia–Gupta model
calculations [8].

According to the Kagan–Zhernov rule the slope of the Cu(Al) system at high
temperatures must be positive in contrast to the Al(Cu) system, because the valence
difference between aluminium impurity and host copper is positive. This prediction is
in accordance with the results of our two most concentrated Cu(Al) alloys, while it is in
disagreement with the results of the less concentrated alloys, which show negative slopes.
The discrepancy in the sign of the slopes between the most and least concentrated alloys
can be attributed to the presence of residual Fe impurities in the initial pure Cu from which
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Figure 5. The maximum experimental values of DMR1(c, TH )/ρ0 as a function ofTH /2D

together with theη(T ) function for different copper alloys.

the alloys are prepared. It is worth mentioning that previous investigations on Cu-based
alloys containing Fe impurities [25] showed that the DMR has a negative slope at high
temperatures. If we assume that the existing residual Fe impurities in the pure Cu used
in the present work cause a DMR with negative slope at high temperatures, this slope
will normally decrease as the concentration of added Al impurities increases, because the
scattering of the electrons on Al will compensate for the scattering on the residual Fe
impurities. In the most concentrated Cu(Al) alloys the prevailing scattering comes from Al
impurities and so the DMR must have a positive slope according to the Kagan–Zhernov
rule.

5. Conclusions

The measurements reported in this work show that the temperature dependent resistivity
of pure copper and a Cu(Al) alloy with 60 ppm Al, below 12 K, varies asT 4,
while in the temperature range 10 K< T < 35 K it varies asT 5. Values for all
other Cu(Al) alloys measured displayT 5 dependence in the same temperature range.
At intermediate temperatures, the relative DMR1(c, T )/ρ0 shows a hump, whose
corresponding temperatureTH shifts with impurity concentration asc1/5. This result
agrees with the theory of Kagan and Zhernov. In the high-temperature region the relative
deviation1(c, T )/ρ0 depends linearly onT and has a negative slope for the alloys with
low concentration, while the high-concentration alloys show a positive DMR. The negative
slope for the alloys with small Al concentration is attributed to the presence of Fe residual
impurities.
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